Crashworthiness Design and Multiobjective Optimization for Hexagon Honeycomb Structure with Functionally Graded Thickness
نویسندگان
چکیده
منابع مشابه
Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material.
Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consist...
متن کاملTopology Optimization Design of Functionally Graded Structures
1. Abstract Functionally Graded Materials (FGMs) possess continuously graded material properties and are characterized by spatially varying microstructures. Such materials are studied in conjunction with the concept of topology optimization design which determines holes and connectivities of the structure by adding and removing material in the extended fixed design domain. The objective is to d...
متن کاملA comparative study of metamodeling methods for multiobjective crashworthiness optimization
The response surface methodology (RSM), which typically uses quadratic polynomials, is predominantly used for metamodeling in crashworthiness optimization because of the high computational cost of vehicle crash simulations. Research shows, however, that RSM may not be suitable for modeling highly nonlinear responses that can often be found in impact related problems, especially when using limit...
متن کاملDesign of Functionally Graded Structures Using Topology Optimization
The concept of functionally graded materials (FGMs) is closely related to the concept of topology optimization, which consists in a design method that seeks a continuum optimum material distribution in a design domain. Thus, in this work, topology optimization is applied to design FGM structures considering a minimum compliance criterion. The present approach applies the so-called “continuous t...
متن کاملDesign of Functionally Graded Phononic Band Gaps Using Topology Optimization
Phononic band-gap materials prevent elastic waves from propagating at certain frequency ranges. These materials are called Phononic Crystals (PCs). PCs have been applied to manufacture frequency filters, vibration protection devices, waveguide and to improve ultrasound imaging transducers. Periodic band-gap materials are designed by choosing the location and the size of the band gaps. Many work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Materials Science and Engineering
سال: 2019
ISSN: 1687-8434,1687-8442
DOI: 10.1155/2019/8938696